



# Local and Global Diffusion Networks for Trimmed Action Recognition

Zhaofan Qiu, Yingwei Pan, and Ting Yao JD Al Reseach, Beijing, China

Presenter: Zhaofan Qiu

#### Outlines



- **01** Local and Global Diffusion Networks
- Backbone Networks
- Feature Aggregation
- Experimental Results
- Take-Home Messages

- Traditional 3D CNN:
  - Local representations + Local transformations + Global pooling



- Traditional 3D CNN:
  - Local representations + Local transformations + Global pooling



- Local Transformation (2D/3D convolutions, 2D/3D poolings) ignores the large-range dependency
- Large number of transformations for large receptive field
- Holistic view of input video(clip) is only involved after global pooling



"Learning Spatio-Temporal Representation with Local and Global Diffusion" [Qiu et al. CVPR 2019]

1. Local Path + Global Path



- 1. Local Path + Global Path
- 2. Local and Global Diffusion (two-direction)



- 1. Local Path + Global Path
- 2. Local and Global Diffusion (two-direction)
- 3. Local and Global Combination



- Local transformation: 2D/3D convolutions, 2D/3D poolings
- Global transformation: non-linear mapping

"Learning Spatio-Temporal Representation with Local and Global Diffusion" [Qiu et al. CVPR 2019]

- Local transformation: 2D/3D/P3D convolutions, 2D/3D poolings
- Global transformation: non-linear mapping
- Diffusion:
  - (1) Global-to-local diffusion:
  - The global residual from global path is broadcasted to each local position in local path:

 $\mathbf{x}_{l} = \operatorname{ReLU}(\mathcal{F}(\mathbf{x}_{l-1}) + \mathcal{US}(\mathbf{W}^{x,g}\mathbf{g}_{l-1}))$ 

- (2) Local-to-global diffusion:
- The global-average-pooled local representation is linearly embedded into global path:  $\mathbf{g}_l = \operatorname{ReLU}(\mathbf{W}^{g,x}\mathcal{P}(\mathbf{x}_l) + \mathbf{W}^{g,g}\mathbf{g}_{l-1})$

"Learning Spatio-Temporal Representation with Local and Global Diffusion" [Qiu et al. CVPR 2019]

• In this paper, the experiments are conducted on Kinetics-400, Kinetics-600, UCF101, HMDB51 for action recognition and J-HMDB, UCF101D for spatio-temporal action detection.

"Learning Spatio-Temporal Representation with Local and Global Diffusion" [Qiu et al. CVPR 2019]

- In this paper, the experiments are conducted on Kinetics-400, Kinetics-600, UCF101, HMDB51 for action recognition and J-HMDB, UCF101D for spatio-temporal action detection.
- For more details and experimental results, please check our paper:

"Learning Spatio-Temporal Representation with Local and Global Diffusion"

• Or come to our poster:

#### Jun 20, 15:20, poster #128

 The code & model in this paper will be released (after conference) at: https://github.com/ZhaofanQiu/local-and-global-diffusion-networks

#### Outlines



- Local and Global Diffusion Networks
- Backbone Networks
- Feature Aggregation
- **O4** Experimental Results
- Take-Home Messages

• Local and Global Diffusion is a general component that can be injected into any existing 3D CNN backbones.

- Local and Global Diffusion is a general component that can be injected into any existing 3D CNN backbones.
- Pseudo-3D (P3D) Networks [Qiu et al. ICCV 2017]



(a) P3D-A (b) P3D-B (c) P3D-C

- Local and Global Diffusion is a general component that can be injected into any existing 3D CNN backbones.
- Pseudo-3D (P3D) Networks [Qiu et al. ICCV 2017]



• Pseudo-3D (P3D) Networks [Qiu et al. ICCV 2017]





• Pseudo-3D (P3D) Networks [Qiu et al. ICCV 2017]



#### Outlines



- Local and Global Diffusion Networks
- Backbone Networks
- Feature Aggregation
- **O4** Experimental Results
- Take-Home Messages

 The backbones (LGD-P3D-ResNet, LGD-P3D-Xception) are trained on short/long clips (16-frame and 128-frame), the video-level prediction is produced by clip feature aggregation

- The backbones (LGD-P3D-ResNet, LGD-P3D-Xception) are trained on short/long clips (16-frame and 128-frame), the video-level prediction is produced by clip feature aggregation
- Average Pooling (AP): Score extraction + average pooling. No additional training.

$$R_{AP} = \frac{1}{N} \sum_{i:f_i \in F} f_i$$

• **Temporal Convolutional Pooling** (TCP): Feature extraction + temporal 1D convolution. Need additional training.

$$R_{TCP} = Conv1D(\{f_1, f_2, ..., f_N\})$$

- Temporal Convolutional Pooling (TCP)
- Conv1D architecture (uniformly sample 20 clips each video)



- Temporal Convolutional Pooling (TCP)
- Conv1D for multi-stream fusion



## Outlines



- Local and Global Diffusion Networks
- Backbone Networks
- Feature Aggregation
- Experimental Results
- Take-Home Messages

Validation set

| Input | Backbone         | Clip | Aggregation | Top1  | Тор5  |
|-------|------------------|------|-------------|-------|-------|
| Frame | LGD-P3D-Xception | 16   | AP          | 67.5% | 86.9% |
| Frame | LGD-P3D-Xception | 128  | AP          | 69.8% | 88.3% |
| Frame | LGD-P3D-Xception | 16   | ТСР         | 70.6% | 89.3% |

| Input | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|-------|-------------------|------|-------------|-------|-------|
| Frame | LGD-P3D-Xception  | 16   | AP          | 67.5% | 86.9% |
| Frame | LGD-P3D-Xception  | 128  | AP          | 69.8% | 88.3% |
| Frame | LGD-P3D-Xception  | 16   | ТСР         | 70.6% | 89.3% |
| Frame | LGD-P3D-ResNet101 | 128  | AP          | 69.7% | 88.8% |

|     | Input                      | Backbone          | Clip | Aggregation | Тор1  | Тор5  |  |
|-----|----------------------------|-------------------|------|-------------|-------|-------|--|
|     | Frame                      | LGD-P3D-Xception  | 16   | AP          | 67.5% | 86.9% |  |
|     | Frame                      | LGD-P3D-Xception  | 128  | AP          | 69.8% | 88.3% |  |
|     | Frame /                    | LGD-P3D-Xception  | 16   | ТСР         | 70.6% | 89.3% |  |
|     | Frame                      | LGD-P3D-ResNet101 | 128  | AP          | 69.7% | 88.8% |  |
|     |                            |                   |      |             |       |       |  |
| Ima | ImageNet pre-training      |                   |      |             |       |       |  |
|     | Kin sties COO was tasining |                   |      |             |       |       |  |

Kinetics-600 pre-training

| Input | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|-------|-------------------|------|-------------|-------|-------|
| Frame | LGD-P3D-Xception  | 16   | AP          | 67.5% | 86.9% |
| Frame | LGD-P3D-Xception  | 128  | AP          | 69.8% | 88.3% |
| Frame | LGD-P3D-Xception  | 16   | ТСР         | 70.6% | 89.3% |
| Frame | LGD-P3D-ResNet101 | 128  | AP          | 69.7% | 88.8% |
| Flow  | LGD-P3D-Xception  | 16   | AP          | 54.4% | 77.2% |
| Flow  | LGD-P3D-Xception  | 128  | AP          | 61.3% | 83.1% |
| Flow  | LGD-P3D-Xception  | 16   | ТСР         | 60.5% | 82.4% |
| Flow  | LGD-P3D-ResNet101 | 128  | AP          | 64.4% | 85.5% |

| Input | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|-------|-------------------|------|-------------|-------|-------|
| Frame | LGD-P3D-Xception  | 16   | AP          | 67.5% | 86.9% |
| Frame | LGD-P3D-Xception  | 128  | AP          | 69.8% | 88.3% |
| Frame | LGD-P3D-Xception  | 16   | ТСР         | 70.6% | 89.3% |
| Frame | LGD-P3D-ResNet101 | 128  | AP          | 69.7% | 88.8% |
| Flow  | LGD-P3D-Xception  | 16   | AP          | 54.4% | 77.2% |
| Flow  | LGD-P3D-Xception  | 128  | AP          | 61.3% | 83.1% |
| Flow  | LGD-P3D-Xception  | 16   | ТСР         | 60.5% | 82.4% |
| Flow  | LGD-P3D-ResNet101 | 128  | AP          | 64.4% | 85.5% |
| Audio | Xception          | -    | AP          | 21.9% | 36.8% |
| Audio | Xception          | -    | ТСР         | 21.7% | 36.9% |

| Input | Backbone                         | Clip     | Aggregation | Top1  | Тор5  |  |  |
|-------|----------------------------------|----------|-------------|-------|-------|--|--|
| Frame |                                  |          |             |       | 5.9%  |  |  |
| Frame | THE RECEIPTION OF THE RECEIPTION | 1 Land   |             |       |       |  |  |
| Frame | the Balance of State             | 9.3%     |             |       |       |  |  |
| Frame |                                  | Xception |             |       |       |  |  |
| Flow  |                                  |          |             |       | 7.2%  |  |  |
| Flow  |                                  | 171.8    |             |       | 3.1%  |  |  |
| Flow  |                                  |          |             |       | 2.4%  |  |  |
| Flow  | LGD-P3D-ResNet101                | 128      | AP          | 64.4% | 85.5% |  |  |
| Audio | Xception                         | -        | AP          | 21.9% | 36.8% |  |  |
| Audio | Xception                         | -        | ТСР         | 21.7% | 36.9% |  |  |

| Input | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|-------|-------------------|------|-------------|-------|-------|
| Frame | LGD-P3D-Xception  | 16   | AP          | 67.5% | 86.9% |
| Frame | LGD-P3D-Xception  | 128  | AP          | 69.8% | 88.3% |
| Frame | LGD-P3D-Xception  | 16   | ТСР         | 70.6% | 89.3% |
| Frame | LGD-P3D-ResNet101 | 128  | AP          | 69.7% | 88.8% |
| Flow  | LGD-P3D-Xception  | 16   | AP          | 54.4% | 77.2% |
| Flow  | LGD-P3D-Xception  | 128  | AP          | 61.3% | 83.1% |
| Flow  | LGD-P3D-Xception  | 16   | ТСР         | 60.5% | 82.4% |
| Flow  | LGD-P3D-ResNet101 | 128  | AP          | 64.4% | 85.5% |
| Audio | Xception          | -    | AP          | 21.9% | 36.8% |
| Audio | Xception          | _    | ТСР         | 21.7% | 36.9% |

| Input      | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|------------|-------------------|------|-------------|-------|-------|
| Two-stream | LGD-P3D-Xception  | 16   | AP          | 69.3% | 88.0% |
| Two-stream | LGD-P3D-Xception  | 128  | AP          | 71.7% | 89.7% |
| Two-stream | LGD-P3D-Xception  | 16   | ТСР         | 72.8% | 90.7% |
| Two-stream | LGD-P3D-ResNet101 | 128  | AP          | 72.3% | 90.4% |

| Input      | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|------------|-------------------|------|-------------|-------|-------|
| Two-stream | LGD-P3D-Xception  | 16   | AP          | 69.3% | 88.0% |
| Two-stream | LGD-P3D-Xception  | 128  | AP          | 71.7% | 89.7% |
| Two-stream | LGD-P3D-Xception  | 16   | ТСР         | 72.8% | 90.7% |
| Two-stream | LGD-P3D-ResNet101 | 128  | AP          | 72.3% | 90.4% |
| +audio     | LGD-P3D-Xception  | 16   | AP          | 70.9% | 88.8% |
| +audio     | LGD-P3D-Xception  | 128  | AP          | 73.9% | 90.9% |
| +audio     | LGD-P3D-Xception  | 16   | ТСР         | 74.8% | 91.7% |
| +audio     | LGD-P3D-ResNet101 | 128  | AP          | 74.1% | 91.4% |

| Input      | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|------------|-------------------|------|-------------|-------|-------|
| Two-stream | LGD-P3D-Xception  | 16   | AP          | 69.3% | 88.0% |
| Two-stream | LGD-P3D-Xception  | 128  | AP          | 71.7% | 89.7% |
| Two-stream | LGD-P3D-Xception  | 16   | ТСР         | 72.8% | 90.7% |
| Two-stream | LGD-P3D-ResNet101 | 128  | AP          | 72.3% | 90.4% |
| +audio     | LGD-P3D-Xception  | 16   | AP          | 70.9% | 88.8% |
| +audio     | LGD-P3D-Xception  | 128  | AP          | 73.9% | 90.9% |
| +audio     | LGD-P3D-Xception  | 16   | ТСР         | 74.8% | 91.7% |
| +audio     | LGD-P3D-ResNet101 | 128  | AP          | 74.1% | 91.4% |
| Ensemble   | -                 | -    | -           | 76.4% | 92.8% |

| Input      | Backbone          | Clip | Aggregation | Top1  | Тор5  |
|------------|-------------------|------|-------------|-------|-------|
| Two-stream | LGD-P3D-Xception  | 16   | AP          | 69.3% | 88.0% |
| Two-stream | LGD-P3D-Xception  | 128  | AP          | 71.7% | 89.7% |
| Two-stream | LGD-P3D-Xception  | 16   | ТСР         | 72.8% | 90.7% |
| Two-stream | LGD-P3D-ResNet101 | 128  | AP          | 72.3% | 90.4% |
| +audio     | LGD-P3D-Xception  | 16   | AP          | 70.9% | 88.8% |
| +audio     | LGD-P3D-Xception  | 128  | AP          | 73.9% | 90.9% |
| +audio     | LGD-P3D-Xception  | 16   | ТСР         | 74.8% | 91.7% |
| +audio     | LGD-P3D-ResNet101 | 128  | AP          | 74.1% | 91.4% |
| Ensemble   | -                 | -    | -           | 76.4% | 92.8% |
| Ensemble+  |                   |      |             | 77.1% | 93.0% |

Ensemble+: other backbones (SENet, ResNeXt) that are not fully accomplished, and some models trained more than once.

## Outlines



- Local and Global Diffusion Networks
- Backbone Networks
- Feature Aggregation
- Experimental Results
- Take-Home Messages

#### **05** Take-Home Messages

- Local and Global Diffusion + Pseudo-3D Convolution provides efficient and economic way for discriminative spatio-temporal representation learning (especially with limited time)
- 2. Temporal Convolutional Pooling is (potentially) more powerful than simple average pooling, however, the additional training may improve the training cost (that is the reason why ResNet + TCP is not accomplished during the challenge)
- 3. Even the 3D CNNs on RGB frame become more and more powerful, the optical flow and audio streams are still important for video understanding

Future directions:

- 1. The diffusion functions for LGD
- 2. The choice of conv1d architecture for TCP
- 3. The way of multi-stream fusion



#### Thanks!

#### Zhaofan Qiu

<u>zhaofanqiu@gmail.com</u>

http://zhaofanqiu.deepfun.club

Poster: Jun 20, 15:20, poster #128 Resources: https://github.com/ZhaofanQiu/local-and-global-diffusion-networks