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Semantic Video Segmentation
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Abstract—Semantically labeling every pixel in a video is a
very challenging task as video is an information-intensive media
with complex spatio-temporal dependency. We present in this
paper a novel deep convolutional network architecture, named
Deep Spatio-Temporal Fully Convolutional Networks (DST-FCN),
which leverages both spatial and temporal dependencies among
pixels and voxels by training them in an end-to-end manner.
Specifically, we introduce a two-stream network by learning the
deep spatio-temporal dependency, in which a 2D FCN followed
by the Convolutional Long Short-Term Memory (ConvLSTM) is
employed on the pixel level and a 3D FCN is exploited on the
voxel level. Our model differs from conventional FCN in that
it not only extends FCN by adding ConvLSTM on pixel-level
for exploring long-term dependency, but also proposes 3D FCN
to enable voxel level prediction. On two benchmarks of A2D
and CamVid, our DST-FCN achieves superior results to state-of-
the-art techniques. More remarkably, we obtain to-date the best
reported results: 45.0% per-label accuracy on A2D and 68.8%
mean IoU on CamVid.

Index Terms—Semantic Segmentation, Fully Convolutional
Networks, Long-Short Term Memory.

I. INTRODUCTION

ODAY'’S digital contents are inherently multimedia: text,

image, audio, video and so on. Video, in particular,
becomes a new way of communication between Internet
users with the proliferation of sensor-rich mobile devices.
Accelerated by tremendous increase in Internet bandwidth
and storage space, video data has been generated, published
and spread explosively, becoming an indispensable part of
today’s big data. This poses new challenges for multimedia
community to build more effective and efficient video anal-
ysis methods. While the recent research on semantic video
understanding achieves promising progresses in the area of
video classification [1][2] and detection [3], semantic video
segmentation, which is to assign labels for voxels (pixels
from spatio-temporal viewpoint), is an important yet very
challenging task. Moreover, semantic video segmentation is
the key to many applications such as autonomous driving [4]
and fashion parsing [5].

The research on semantic video segmentation has proceeded
along two dimensions, i.e., traditional hand-designed models
[6][7][8][9] and deep convolutional neural networks based
methods [10][11]. The former typically consists of a pre-
processing (e.g., superpixels or supervoxels extraction) and a
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Fig. 1. Locally, a video frame is visually and semantically similar to its
adjacent frames. For example, we can observe that the background varies
very smoothly and only major objects have clear movements. Both the static
and dynamic relationships are helpful to describe pixel level semantics in the
video. Therefore, this kind of spatio-temporal dependency should be exploited
for semantic video segmentation.

post-processing step (e.g., Conditional Random Field (CRF))
to refine the segmentation results, making the task computa-
tionally expensive. Furthermore, the results may suffer from
the robustness problem as each pixel is labeled with the
class of its neighboring region, while the holistic frame-level
information is overlooked in the learning procedure. The latter
trains the model on raw frame input in an end-to-end and
pixels-to-pixels manner, which are more efficient and effective
as the deep architectures encode both local and global spatial
information. More importantly, video is a sequence of frames
with temporal variations. As such, the adjacent video frames
are usually visually and semantically similar, making the
changes between segmentation results of each frame smooth as
illustrated in Figure 1. Therefore, labeling every single pixel in
a video should also take the temporal dependency into account.

In this work, we aim to investigate the deep fully convolu-
tional networks (FCN) to model spatio-temporal dependency
from videos for semantic segmentation. A video is represented
by two kinds of structures including the sequential frames
and a video clip as a whole. We model each video structure
as a single stream by 2D FCN (for “frame”) or 3D FCN
(for “clip”). The framework therefore learns both spatial and
temporal dependencies through 2D FCN on pixel level and 3D
FCN on voxel level. Furthermore, we employ Convolutional
Long Short-Term Memory (ConvLSTM) on the sequential
frames stream to exploit long-term temporal information. In
order to output pixel/voxel labels at the original resolution,
deconvolutional layers have been exploited to enable upsam-
pling. Finally, we combine the outputs of two streams by linear
fusion. It is also worth noting that the entire architecture is
trainable in an end-to-end fashion.

Our main contributions include: 1) We explore both s-
patial and temporal structure in videos for semantic video
segmentation, which is a problem not yet fully understood
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in the literature. Technically, we develop a new two-stream
architecture, which fully mines spatio-temporal dependency
in videos. 2) In sequential frame stream, the utilization of 2D
FCN to mine spatial dependency plus ConvLSTM to further
model temporal information is one of the first effort towards
semantic segmentation task. In the clip stream, a 3D FCN is
particularly devised on voxel level. 3) The experiments on two
widely used benchmarks demonstrate the advantages of our
proposed architecture over several state-of-the-art approaches
on semantic video segmentation.

The remaining sections are organized as follows. Section II
describes related works on semantic segmentation. Section III
details the learning of dense representation for videos, while
Section IV presents our deep spatio-temporal fully convolu-
tional networks for semantic video segmentation. Section V
provides empirical evaluations on two popular datasets, i.e.,
A2D and CamVid, followed by the conclusions in Section VI.

II. RELATED WORK

Semantic segmentation is a fundamental computer vision
problem, which has received intensive attention recently. We
will briefly summarize the existing algorithms on semantic
video segmentation, and then present related works on se-
mantic image segmentation by using Convolutional Neural
Networks (CNNs).

A. Semantic Video Segmentation

Although many works focusing on video analysis appear,
semantic video segmentation is still a challenging problem
as the semantic label of each voxel highly relies on the
whole spatio-temporal context in the video. To avoid the high
computation cost of per-voxel analysis, most previous methods
choose unsupervised video segmentation [12][13][14][15] to
produce consistent regions (named supervoxels), and then as-
sign each region with a semantic label. Based on unsupervised
segmentation, different methods are proposed to represent
supervoxel by utilizing appearance, motion, location [16] and
3D reconstruction [6][17]. After describing single supervoxel,
Pinheiro et al. [18] further focus on consistent constrain by
using fully connected spatio-temporal Markov Random Field
(MRF), while Liu et al [7] exploit dense CRF to explore long-
range dependency between supervoxels.

In sum, most of the aforementioned methods do not fully
involve context information of voxels in the video and the
local representations are not sufficient for semantic labeling.
Moreover, they are not scalable because most of them require
computational intensive steps of preprocessing (e.g., super-
voxel extraction) or post-processing (e.g., MRF and CRF).
Our method is different from them in that we incorporate
spatio-temporal convolutional networks into semantic video
segmentation, which learns high-level semantic representation
by exploring spatio-temporal dependency. More importantly,
the entire architecture of our DST-FCN is trained end-to-end.

B. Semantic Image Segmentation with CNNs

As CNNs has shown its impressive ability on image classi-
fication [19][20][21] and video classification [22][23][24][25],

more and more works attempt to explore CNNs in other
computer vision tasks including dense prediction task, e.g.,
semantic image segmentation. The typical way of applying
CNNSs to image segmentation is through patch-by-patch scan-
ning [26][27], which feeds a cropped patch to the network,
and treats output as appearance feature to predict label of
the centric pixel. In these works, CNNs are pre-trained on
image classification dataset and only utilized as semantic
feature extractor, while the high learning capacity of deep
architecture for segmentation has not been fully exploited. To
tackle with this limitation, Jonathan et al. propose fully con-
volutional network (FCN) for semantic image segmentation,
which employs deconvolution operation as upsampling making
FCN a pixels-to-pixels network to perform spatially dense
prediction and efficiently end-to-end training [28]. Similar in
spirit, the symmetrical encoder-decoder network by adding
several deconvolutional layers instead of a single upsampling
layer is proposed in [10][29]. To further improve the ability
of segmentation network, global features in image-level visual
field are involved by Lin et al. in [30] and CRF is employed
as a post-processing step to take label spatial constancy into
account in [31]. Moreover, there are also some works, which
aim to reduce the time cost of CRF by utilizing CNN [32],
piecewise network [33] and Recurrent Neural Network (RN-
N) [34]. In addition, the context information and cross-layer
predictions are integrated into the segmentation procedure in
[35] and [36], respectively.

Different from 2D FCN for semantic image segmentation,
our proposed DST-FCN expands two fashion networks (3D
CNN and LSTM) to fully convolutional structures (3D FCN
and ConvLSTM) to capture voxel level relationship and long-
term temporal dependency for semantic video segmentation,
respectively. Based on our architecture, voxel level dense
representation could be learnt with high-level semantics.

III. LEARNING DENSE VIDEO REPRESENTATION

Unlike classification tasks (e.g., action recognition and event
detection) which depend on a global video representation,
semantic video segmentation requires a dense representation
with spatial and temporal dependencies, as semantic labels
differ from each other in terms of voxels. However, in the
typical 2D/3D CNN architectures, most of the spatial infor-
mation is lost through spatial pooling and transformation in
the fully-connected layers, while the temporal dependency is
also disregarded by temporal pooling operation. Therefore, in
this section, we describe three architectures utilized as dense
feature extractors for videos including 2D FCN, 3D FCN and
convolutional LSTM. With these three architectures, the learnt
video representations could manifest spatio-temporal depen-
dency and meet the requirements of semantic segmentation.

A. Learning Dependency with 2D/3D FCN

Inspired by recent advances in video representation learning
by using CNN, two popular architectures, VGG_16 [20], the
widely adopted 2D CNN architecture for image classification,
and C3D [37], 3D CNN for video action recognition, are
exploited as references to design 2D FCN and 3D FCN for
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Fig. 2. 2D FCN and 3D FCN architectures for video dense feature extraction. Top: 2D FCN is re-purposed from VGG_16 network by removing Pool4, Pool5
and all fully-connected layers. Bottom: Similar in spirit, 3D FCN is re-purposed from C3D network. All the discarded layers are indicated by gray dash line,
and the convolutional layers with dilation (Conv5, Conv6) are highlighted by red line. With these modification, the learnt representation becomes dense and
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Fig. 3. Comparison between typical LSTM and our designed ConvLSTM ar-
chitecture. The typical LSTM takes feature vectors without spatial dimension
as input, and exploit fully-connected method to update memory and produce
output. For ConvLSTM, all the input, output and memory are spatial feature
maps. As such, we choose convolutional operation for all gates in ConvLSTM
and optimize convolution kernels during training epoch.

(b) ConvLSTM.

video dense representation extraction. The architectures of 2D
FCN and 3D FCN are illustrated in Figure 2. Specifically, our
2D FCN/3D FCN is re-purposed from VGG_16/C3D network
by removing all fully-connected layers, and the first five
convolutional layers are initialized from VGG_16/C3D model
pre-trained on ILSVRC-2012 [19]/Sports-1M [23] dataset,
making the bottom convolutional layers in our architecture
powerful for semantic segmentation. It is also worth noting
that 2D FCN takes single frame as input while 3D FCN is
feeded by short clip consisting of five consecutive frames.
Furthermore, in 2D FCN, we modify the next higher layers
in terms of the following three dimensions.

Reduce spatial pooling stride. The original VGG_16
contains thirteen convolutional layers, five max-pooling layers
and three fully-connected layers, while the output of FC6 layer
is usually treated as a global representation of the input image.
In VGG_16, each max-pooling layer will reduce the resolution
by half, which results in too much information loss after

reducing the input image size by 32 times in total. Therefore,
we modify the pooling stride of Pool4 and Pool5 layers from
2 to 1 to preserve the resolution of the output in these two
pooling layers.

Add one more convolutional layer. We add one more
convolutional layer, i.e., Conv6 layer, which outputs dense
video representation. Specifically, the convolution kernel of
Conv6 layer is designed as 3 x 3 with 1,024 channels for more
efficient segmentation. With these two major modifications,
the outputs of Conv4, Conv5 and Conv6 will have the same
resolution and the final representation will only be 8 times
smaller than the initial input image in spatial dimension.

Increase dilation in convolutional layers. Due to the
pooling layer being discarded in our 2D FCN, the receptive
field of Conv5 will be totally different from original Conv5
in VGG_16, which means the convolution operation in Conv5
cannot support the same spatial dimension of the input frame.
As such, the pre-trained weights of Conv5 layer in VGG_16
cannot be directly utilized in our 2D FCN. Hence, we adopt
the similar strategy of the hole algorithm proposed in [31]
to solve this problem. More specifically, the dilation to the
convolutional filters is increased by skipping some input pixels
to simulate the input after original Pool4. The similar strategy
with increasing dilation is further utilized in Conv6 to expand
the receptive field of final representation. Overall, with the
above three major modifications, our 2D FCN could produce
feature maps with only 8 times reduced resolution and preserve
much more spatial dependency within the input frame.

For 3D FCN, it is mainly adapted from the C3D network
with the similar three changes, i.e., reducing spatial pooling
stride for Pool4 and Pool5, replacing FC6 layer with Conv6
layer and increasing dilation for Conv5 and Conv6 layers.
Moreover, all the temporal pooling operations in original C3D
are discarded as semantic video segmentation is evaluated only
on each individual frame. Specifically, we follow the recipe in
C3D and exploit 3 x 3 x 3 convolution kernel in the first five
convolutional layers. The convolution kernel of Conv6 layer in
3D FCN is designed as 3 x 3 x 1 kernel with 1,024 channels.
By modifying these parts in C3D architecture, 3D FCN could
generate 3D dense representation which implicitly captures
both spatial and temporal dependencies in a short video clip.
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Fig. 4. An overview of our DST-FCN framework for semantic video segmentation (better viewed in color). This framework could be divided into two streams,
treating the input video clip as sequential (individual) frames and a whole clip separately. For the stream of sequential frames, 2D FCN is employed to extract
dense representation for each frame followed by ConvLSTM to exploit the long-term temporal relationship, while the dense representation for the entire clip
stream is generated through 3D FCN. After the dense representation extraction, per-pixel/per-voxel softmax and deconvolutional layers are attached to generate
the voxel-level prediction results for each stream. Moreover, the final prediction results are generated by further linearly fusing the two streams. The example
is from A2D dateset [8], and the labels of two output regions are baby-walking and baby-none.

B. Learning Temporal Dependency with ConvLSTM

Given the dense representation of each frame generated
by our proposed 2D FCN, we aim to exploit the long-term
temporal dependency among individual frames to learn more
precise and temporally smooth segmentation results. Here,
we adopt the LSTM architecture, which is widely used to
model temporal dependency among frame sequence in a video.
Typical LSTM is a well-designed RNN with purpose-built
memory cells to store foregone information and three gates to
control the updating of the memory. Different from the typical
LSTM with feature vectors as input and output, convolutional
LSTM (ConvLSTM) is employed as all the input, output and
memory are spatial feature maps. Figure 3 details the compar-
ison between typical LSTM and ConvLSTM. Specifically, we
adopt 2D spatial convolution operations instead of the matrix
multiplications in the updating rule of typical LSTM as in
[38]. It is worth noting that unlike [38] which directly takes
a sequence of frames as the input to ConvLSTM, ours feeds
dense representations obtained by 2D FCN into ConvLSTM.
As such, our design is potentially more effective and robust,
since we additionally consider the spatial dependency through
2D FCN on pixel level.

A new fully convolutional updating rule is proposed for
ConvLSTM. Formally, let X = (X!, ..., XT) denote the
sequence consisting of the feature map extracted from each
video frame through 2D FCN separately. At each time step ¢,
the cell state C* and output H*® in our proposed ConvLSTM
are updated as

G' =Ky« X' + K« H™" +by)
I'=c(KF« X"+ K!'« H™ " + b))
F'=o(Kf* X"+ K}« H'™" +by)

cell input
mput gate
forget gate

QY
c'=G'or'+c" o F cell state
O'=0(KI+« X"+ K}« H'"™" +b,) output gate
H'=¢(CH o0 cell output

where o(z) = 1—%% is logistic sigmoid and ¢(z) = z:;:::

is hyperbolic tangent element-wise non-linear activation func-

tions, mapping real numbers to (0, 1) and (—1, 1), respectively.
The pixel-wise sum and product of two feature maps are
denoted with + and ©, respectively. The gate output I, F* and
O? are calculated to update the cell state, reduce the effect of
vanishing and exploding gradients. Note that unlike the typical
LSTM, we adopt 2D spatial convolution operation (x) instead
of the matrix multiplications in our ConvLSTM. The param-
eters of convolution kernels K and biases b are optimized
during the training process. With the new fully convolutional
updating rule, ConvLSTM could generate the output sequential
feature maps H = (H!, ..., HT) as the dense representation
with long-term temporal information among voxels.

IV. VIDEO SEGMENTATION WITH DST-FCN

By incorporating the extracted video dense representation
through three designed architectures (2D FCN, 3D FCN and
ConvLSTM) into semantic video segmentation, this paper
proposes a novel Deep Spatio-Temporal Fully Convolutional
Networks (DST-FCN), as illustrated in Figure 4. Our archi-
tecture includes two streams, i.e., sequential frames stream
and video clip stream. Given an input video clip, 2D FCN
followed by ConvLSTM is utilized to extract dense feature
for each frame in sequential frames and 3D FCN is employed
to generate dense feature for the whole video clip. The basic
idea of DST-FCN is to predict the voxel-level semantic label
based on the dense representations for input video clip by
exploiting both spatial and temporal dependencies.

A. Voxel-level Prediction

Given the input video clip, the target for semantic video
segmentation is to assign each voxel with the specific semantic
label. In our DST-FCN, such voxel-level prediction results can
be achieved based on the extracted dense representation by uti-
lizing a per-pixel/per-voxel fully connected layer followed by a
per-pixel/per-voxel softmax layer for sequential frames stream
and video clip stream, respectively. Through the per-pixel/per-
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TABLE I
DST-FCN ARCHITECTURE. HYPER-PARAMETERS OF EACH LAYER CONTAIN FOUR COLUMNS, INCLUDING THE TYPE OF THE LAYER, FILTER
SIZE/STRIDE, CHANNELS OF OUTPUT MAP AND SPATIAL SIZE IN TERMS OF RELATIVE RATIO TO THE ORIGINAL RESOLUTION. LAYERS 1~10 ARE
INITIALIZED ON VGG_16 [20] AND C3D [37], WHILE THE PARAMETERS IN BOLD FONT ARE DIFFERENTLY DEVISED FOR EXPLORING MORE SPATIAL
INFORMATION. LAYERS 13~ 15 SHOW HOW TO GENERATE PER-VOXEL PREDICTION FROM DENSE REPRESENTATION. FINAL RESULTS ARE OBTAINED BY
FUSING THE TWO STREAMS.

sequential frames stream video clip stream
id type filter-stride #channels  spatial size type filter-stride #channels  spatial size
1 2xconv2d (3,3)-(1,1) 64 1 conv3d (3,3,3)-(1,1,1) 64 1
2 max-pooling 2,2)-(2,2) 64 12 max-pooling 2,2,1)-(2,2,1) 64 172
3 2 xconv2d (3,3)-(1,1) 128 12 conv3d (3,3,3)-(1,1,1) 128 12
4 max-pooling 2,2)-(2,2) 128 1/4 max-pooling 2,2,1)-(2,2,1) 128 1/4
5 3xconv2d (3,3)-(1,1) 256 1/4 2xconv3d (3,3,3)-(1,1,1) 256 1/4
6 max-pooling (2,2)-(2,2) 256 1/8 max-pooling 2,2,1)-(2,2,1) 256 1/8
7 3xconv2d (3,3)-(1,1) 512 1/8 2xconv3d (3,3,3)-(1,1,1) 512 1/8
8 max-pooling 2,2)-(1,1) 512 1/8 max-pooling 2,2,1)-(1,1,1) 512 1/8
9 3xconv2d (3,3)-(1,1) 512 1/8 2xconv3d (3,3,3)-(1,1,1) 512 1/8
10 | max-pooling 2,2)-(1,1) 512 1/8 max-pooling 2,2,1)-1,1,1) 512 1/8
11 1 xconv2d (3,3)-(1,1) 1024 1/8 1xconv3d (3,3,D)-(1,1,1) 1024 1/8
12 conv-Istm (3,3)-(1,1) 1024 1/8
13 conv2d (1,1)-(1,1) classes 1/8 conv3d (1,1,1)-(1,1,1) classes 1/8
14 softmax classes 1/8 softmax classes 1/8
15 deconv2d (16,16)-(8,8) classes 1 deconv3d (16,16,1)-(8,8,1) classes 1
16 stream fusion
voxel softmax layer, the corresponding dense representation V. EXPERIMENTS
can be transformed into voxel-level classification score as
A. Datasets

p(z,y,t) = softmax {W - f (z,y,t) + b} (2)
where f (x,y,t) denotes the representation of the pixel at
(z,y) in the frame at time ¢ in frame sequence stream or
the voxel at (z,y,t) in video clip stream, and p(z,y,t) is
the corresponding probability distribution vector over all the
semantic labels. As the two spatial dimensions of generated
prediction map in Eq. (2) are both 8 times reduced by pooling
layers, a 2D/3D deconvolutional layer (Deconv) is employed
after per-pixel/per-voxel softmax layer to make the size of
prediction map consistent with original input video. Please
also note that the deconvolution kernel in our Deconv layer
is initialized as bilinear interpolation and its parameters are
updated during back propagation process.

B. Spatio-Temporal Fully Convolutional Networks

As shown in Figure 4, our two-stream architecture DST-
FCN is composed of two stages, i.e., dense representation and
voxel-level prediction as described above. Specifically, in the
upper part of the framework, video is treated as sequential
frames and 2D FCN is utilized to learn spatial dependency
for each frame followed by a ConvLSTM to exploit long-term
temporal dependency. While in the lower part, 3D FCN is
utilized to construct video dense representation by leveraging
both spatial and temporal dependencies in the video clip
stream. For sequential frames stream and video clip stream,
per-pixel and per-voxel softmax with deconvolutional layers
are attached to obtain voxel-level probabilistic maps based
on corresponding dense representations, respectively. Finally,
predictions for each voxel from two streams are combined by
linearly fusion. The entire architecture is trainable in an end-
to-end fashion.

We evaluate our approach on two public datasets for seman-
tic video segmentation: A2D [8] and CamVid [6].

A2D. The A2D dataset is a recently released large-scale se-
mantic video segmentation dataset consisting of 3,782 videos
from YouTube. All the pixels of the sampled 11,926 frames are
manually labeled as one of 43 actor-action joint classes or a
background class. The joint classes cover frequent 7 actors and
9 actions, e.g., car-running, adult-running and adult-walking.
We follow the settings in [8] by splitting the videos into 3,036
for training and 746 for testing. Note that we simply treat each
joint label as an individual class, which results in the 44-class
semantic segmentation task on this dataset.

CamVid. The CamVid dataset is a standard video scene
parsing dataset, which consists of daytime and dusk videos
taken from a car driving through Cambridge in UK. There
are five video sequences in total. The sequences are dense-
ly labeled at one frame per second with 11 class labels:
Building, Tree, Sky, Car, Sign-Symbol, Road, Pedestrian,
Fence, Column-Pole, Sidewalk, and Bicyclist. We follow the
training/testing split in [6], with two daytime and one dusk
sequences used for training, and one daytime and one dusk
sequences for testing. There are a total of 701 labeled frames
in the dataset with 468/233 for training/testing.

B. Settings

Video resolution. In A2D dataset, we have 11,926 labeled
frames with different resolutions. In each training iteration,
we randomly crop 280 x 280 regions in original frames as a
strong regularization, and we evaluate on the frames with full
resolution when testing. For CamVid dataset, we apply the
similar preprocessing while the crop resolution is increased to
448 x 448, as its original resolution (720 x 960) is much larger
than that of the frames in A2D dataset.
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TABLE I

AVERAGE PER-LABEL SEGMENTATION ACCURACY, GLOBAL PER-VOXEL ACCURACY AND MEAN IOU IN PERCENTAGE ON A2D. THE HIGHEST SCORE OF
EACH CLASS IS DISPLAYED IN BOLD FONT. PLEASE NOTE THAT FOR MEAN PER-LABEL ACCURACY, RESULTS ON ACTOR, ACTION AND JOINT
ACTOR-ACTION CLASSIFICATION ARE GIVEN, RESPECTIVELY. THE RESULTS OF 2D FCN, 2D FCN+CoNVLSTM, 3D FCN AND DST-FCN ARE

COMPARED WITH TWO BASELINE METHODS PROPOSED IN [8] AND [39]. “~” MEANS THAT THE AUTHORS DID NOT REPORT THEIR MIOU PERFORMANCES.
adult cat baby ball

Method [ BK [climb crawl eat jump roll run walk none [ climb eat jump roll run walk none | climb crawl roll walk none| fly jump roll none
Trilayer [8] 78.5] 33.1 59.8 49.8 19.9 27.6 40.2 31.7 24.6 | 33.1 27.2 6.1 49.848.5 6.6 00 | 204 21.7 393253 0.0 [ 1.0 119 6.1 0.0
GPM [39] 88.4| 74.8 81.0 76.4 49.3 52.4 50.4 41.0 0.0 | 42.8 52.3 33.7 71.7 48.0 19.1 0.0 | 654 65.0 58.4 61.5 0.0 |11.3 28.3 21.1 0.0

2D FCN 97.1] 449 67.2 85.1 6.2 23.420.5 422 52.1| 47.0 543 9.0 64.6 7.8 39.5 12 | 573 67.2 71.2 486 0.0 [ 0.0 02 71.0 0.0

2D FCN+ConvLSTM |98.0| 352 56.7 85.2 23.3 44.4 26.2 51.2 46.9 | 34.3 49.6 14.7 60.8 41.2 36.2 3.8 | 56.8 724 67.0 552 03 | 0.0 39 77.0 13.5

3D FCN 97.1| 552 74.0 78.8 39.0 53.3 48.5 53.9 35.7 | 44.3 40.8 14.8 59.6 25.0 30.9 0.9 | 57.2 52.6 71.2 489 03 | 0.0 10.3 72.5 0.0
DST-FCN 98.0 | 57.8 68.2 87.6 25.2 55.0 43.6 53.0 46.7 | 52.6 53.6 14.9 67.7 38.0 44.7 4.0 | 75.1 68.0 73.9 59.6 1.9 | 0.0 7.3 789 0.3

dog bird car per-label | per-voxel | mloU

Method crawl eat jump roll run walk none[climb eat fly jump roll walk none| fly jump roll run none [[actor action joint |

Trilayer [8] 9.9 31.0 2.0 27.623.6 39.4 0.0 | 28.1 18.2553 20.3 42.5 9.0 0.0 |24.4 759 443 483 2.4 || 457 47.0 265 72.9 -
GPM [39] 44.1 61.5 314 62.6 25.7 74.2 0.0 | 60.6 38.8 66.5 17.5 459 47.9 0.0 |41.2 86.3 70.9 65.9 0.0 || 61.2 59.4 439 83.8 —
2D FCN 389 703 2.1 29.1 7.6 67.0 0.0 | 42.4 36.4 49.8 13.5 52.9 30.2 0.0 |27.0 92.3 458 56.3 2.1 || 55.5 53.0 37.3 91.6 25.1
2D FCN+ConvLSTM | 36.8 60.8 15.2 38.4 16.0 69.1 0.0 | 48.1 26.0 67.2 28.4 49.4 31.7 0.0 |50.3 91.2 49.549.3 13.7 || 56.6 55.6 40.8 92.5 299
3D FCN 22.3 50.4 21.6 33.9 26.4 69.0 0.0 | 36.5 357 60.2 26.6 43.2 43.2 0.0 |31.0 92.5 53.7 57.6 16.1 || 54.4 53.5 40.6 91.3 28.0
DST-FCN 40.1 67.9 18.7 46.526.0 71.7 0.0 | 49.4 34.8 68.2 28.0 46.0 36.7 0.0 |46.5 93.8 52.2 56.6 20.0 || 60.0 59.9 45.0 93.0 334

Network hyper-parameter. The 2D/3D FCN hyper-
parameters of Convl to Conv5 layers follow the settings
of VGG_16 and C3D, and the weights are initialized from
the corresponding pre-trained models, respectively. In these
architectures, Conv6 layer (spatial kernel size: 3 x 3; channels:
1,024; dilation: 12) is exploited in both 2D FCN and 3D FCN,
while a ConvLSTM layer with the same convolutional settings
is exploited only in 2D FCN. In order to generate segmentation
prediction from Conv6/ConvLSTM layer, three layers are
utilized: Conv (kernel size: 1 x 1; channels: class_number) -
Softmax - Deconv (kernel size: 16; stride: 8; pad: 4). Through
these layers, we can obtain the predicted probability map
with 8 times resolution larger than Conv6/ConvLLSTM output,
which is the same as that of the original video. In training
stage, we input 5 consecutive frames as a short clip for 3D
FCN to predict the segmentation results of its centrical frame,
while for ConvLSTM, 16 consecutive frames are input as the
sequential frames to generate the prediction result for the last
frame. Table 1 details the hyper-parameters of our proposed
DST-FCN, particularly for sequential frames stream and video
clip stream, respectively.

Parameter optimization. We train our whole framework by
SGD with momentum. The training epoch is divided into two
parts, 2D/3D FCN are first trained as two individual networks
while ConvLSTM is trained alone by fixing the weights of 2D
FCN. The size of mini-batch is set to 8 for frame, short clip
and frame sequence in 2D FCN, 3D FCN and ConvLSTM,
respectively. Furthermore, we choose “poly” learning rate
policy (base_lr x (1 — —ter__jypower with power fixed to
0.9) which ensures faster convergency. For A2D/CamVid, base
learning rate is set to 0.001/0.01 and the training process will
be stopped after 40K/6K iterations. We fix momentums to 0.9
and weight decays to 0.0005 for all networks.

C. Results on A2D dataset

Table II shows the performance comparison on A2D dataset.
We adopt the evaluation tool provided by the owner of the
dataset which measures the scores based on mean per-label

accuracy of each joint actor-action category. In addition, the
per-voxel accuracies and mean IoU (mloU) are given as well.

We compare with approaches proposed in [8] and [39]
for performance evaluation. All the baseline methods exploit
popular hand-crafted features including dense SIFT, dense
optical flow and dense trajectory for supervoxel based segmen-
tation. Trilayer combines actor, action and joint labels in the
objective function to model the relationship between actor and
action. GPM further proposes a novel model that dynamically
combines segment-level labeling with a hierarchical grouping
process. In addition to DST-FCN, we also provide the per-
formance of 2D FCN, 2D FCN+ConvLSTM and 3D FCN,
respectively. Overall, our DST-FCN architecture outperforms
all the baseline methods on both joint per-label and per-voxel
evaluations. In particular, per-label and per-voxel accuracy
of DST-FCN on joint classification task achieves 45.0% and
93.0%, respectively. More importantly, among the 44 joint
categories, our models achieve the best per-label accuracy
for 23 categories, in which the background accuracy achieve
98.0% making the segmentation boundary more precise. The
result basically indicates the advantage of exploring spatio-
temporal dependency in videos for semantic segmentation.
2D FCN+ConvLSTM, which employs ConvLSTM to further
model long-term temporal information, makes 3.5% per-label
improvement over 2D FCN. An interesting observation is
that the per-label accuracy of 3D FCN on actor task is
lower than that of 2D FCN while 3D FCN leads to better
performance than 2D FCN in terms of per-label accuracy on
action task. This somewhat proves that 3D convolution by
involving multiple frames models temporal information better.

Compared to the best competitor GPM, our DST-FCN
makes the absolute improvement by 9.2% in terms of per-
voxel accuracy, but only 1.1% on per-label accuracy. We
speculate that this may be the result of highly unbalanced
number of voxels from different categories. With A2D dataset
as an example, the average ratio of voxels from background
category is over 87% in each frame. To verify our claim,
we simulate variants of our DST-FCN, namely DST-FCN,,
that multiplies the predicted values of background category
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Method BK | actor | action lper- Per | mloU
abel | voxel

Trilayer [8] | 78.5 | 45.7 47.0 26.5 72.9

GPM [39] 884 | 61.2 594 43.9 83.8

DST-FCN 98.0 | 60.0 59.9 45.0 93.0 33.4

DST-FCNp.9 | 97.3 61.7 62.0 46.8 92.7 333

DST-FCNpg | 96.3 | 63.3 63.9 48.6 92.1 32.7

DST-FCNy.7 | 94.8 64.6 65.5 50.2 91.1 31.4

DST-FCNpg | 924 | 65.6 66.8 51.5 89.2 29.2

DST-FCNyp5 | 87.9 | 66.0 67.5 52.6 85.4 25.5

~FEIRICICICIT ] |

DST-FCN  DST-FCNys DST-FCNos DST-FCNg;

Input Frame DST-FCNos DST-FCNgs

Fig. 5. The performance comparisons and exemplary results by DST-FCN
with different tradeoff parameter q.

by a constant parameter g. The parameter ¢ is set from 0.5
to 0.9 to decrease the probability of background category and
constrain the number of voxels which belong to background
category. Figure 5 shows the performance comparisons and
exemplary results by different DST-FCN,. The per-label accu-
racy is consistently improved when balancing the voxels from
different categories and DST-FCNj 5 can achieve 52.6% per-
label accuracy which leads a large performance boost against
DST-FCN and GPM. More specifically, DST-FCNj 5 achieves
the best performance in 32 out of 44 categories. Instead, per-
voxel and mloU performances of DST-FCNj 5 are significantly
decreased. Furthermore, the quality of segmentation tends to
be worse along with the decreasing of g. The results basically
validate our analysis and somewhat reveal the weakness and
sensitivity of per-label accuracy, where when the number
of voxels from different categories is highly unbalanced,
the improvements on per-label accuracy will be inadequate
for evaluating segmentation. In contrast, per-voxel accuracy
and mloU closely resemble subjective judgement and better
demonstrate the advantage of our DST-FCN.

Figure 6 showcases some examples of semantic video seg-
mentation results by different architectures in our framework.
We can observe that 2D FCN+ConvLSTM, by additionally in-
corporating the temporal information, obtains more satisfying
segmentation results than 2D FCN. For instance, it is hard to
determine which action the bird performs in the first example
from single frame, resulting in poor performance by 2D FCN
alone. Instead, 2D FCN+ConvLSTM or 3D FCN, which is
benefited from the exploration of temporal dependency among
multiple frames, successfully achieves more accurate results.
By combining 2D FCN+ConvLSTM and 3D FCN, further
improvements are observed in DST-FCN. In the extreme
cases where there are amount of small objects (e.g. Bird-
flying in the seventh frame), our DST-FCN also exhibits better
segmentation results.

KIS

Bird-climbing

R SIS Y Y Y

Dog-walking Adult-walking

Ball-rolling

Dog-running W Dog-rolling

Cat-walking

B Dog-eating

2D FCN

Labeled

Ground Truth
frame

3DFCN DST-FCN

ConvLSTM

Fig. 6. Examples of semantic video segmentation results in A2D test set.
Labeled frame in the video, ground truth and comparative results of different
settings are given. We can see that DST-FCN involving pixel, voxel and long-
term temporal dependency can produce better semantic segmentation results.

D. Results on CamVid dataset

Table III shows the experimental results of different ap-
proaches on CamVid dataset. We compare with several state-
of-the-art techniques. The methods in [6][9] describe scene
content by motion point and depth map, while [7][40][41] are
based on super-voxel. The most closely related works are the
CNN-based methods [10][11][35]. In between, temporal co-
herence is disregarded in SegNet [10] and Dilation8 [35]. FSO
[11] mainly focuses on temporal consistency for segmentation.

It is worth noticing that compared to A2D dataset, CamVid
is a much smaller dataset, which may affect the power of deep
architecture due to the lack of training examples. Nevertheless,
DST-FCN still outperforms all the baseline approaches in
terms of mloU. Specifically, DST-FCN can achieve 68.8%,
which makes the improvement over the best competitor FSO
by 2.7% and is so far the highest performance reported on
CamVid dataset. As expected, our 2D FCN achieves the
similar results with FSO and Dilation8, as they all exploit
pre-trained VGG_16 network. ConvLSTM modeling long-
term temporal dependency makes 1.7% improvement over 2D
FCN, while 3D FCN does not exhibit better performance.
This is arisen from the fact that 3D model is pre-trained
on Sports-1M dataset which mainly includes sports-related
videos and is almost unrelated to CamVid dataset, while 2D
model is pre-trained on ILSVRC-2012 dataset with common
objects in CamVid. Therefore, 3D FCN performs poor on the
categories with very few examples, e.g. Sign-Symbol, Column-
Pole, Pedestrian and Bicyclist and may affect the overall
performance when comparing with 2D FCN+ConvLSTM.
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TABLE III
THE PERFORMANCE IN TERMS OF PER-LABEL ACCURACY, PER-VOXEL
ACCURACY AND MIOU ON CAMVID TEST SET. OUR MODEL IS COMPARED
WITH TWO KINDS OF METHODS: TRADITIONAL METHODS AND
CNN-BASED METHODS. “~” MEANS THAT THE AUTHORS DID NOT REPORT
THEIR CORRESPONDING ACCURACIES.

= o)
I S
0 0 o
S - E
Traditional Methods
Motion Point [6] 53.0 | 69.1 -
Depth Map [9] 554 | 82.1 -
Super Parsing [40] 512 | 83.3 -
Active Inference [7] 624 | 82.8 | 47.2
D-NM [41] 60.2 | 84.7 | 48.8
CNN-Based Methods
SegNet [10] 652 | 88.5 | 55.6
FSO [11] - - 66.1
Dilation8 [35] - - 65.3
2D FCN 746 | 91.8 | 66.4
2D FCN+ConvLSTM | 75.9 | 92.0 | 68.1
3D FCN 732 | 89.7 | 62.2
DST-FCN 76.6 | 92.2 | 68.8

B road

Column-pole

B suilding Sky [ | Tree

sign-symbol [l Fence

B sicevak W car
0 W sy

Fig. 7. Semantic video segmentation results of sampled frames in two test
video sequences in CamVid dataset. The frames are 1 fps sampled from the
daytime (upper) and dusk (lower) test video sequences, and the results are
produced by our DST-FCN approach.

Figure 7 further illustrates semantic segmentation results of
two test videos in CamVid dataset. The sampled frames in
the top row are from a daytime video, while the frames in
the bottom row are sampled from a dusk test video. On both
cases, we can clearly see that our DST-FCN architecture could
produce promising semantic segmentation results.

E. Experimental Analysis

Different placement of ConvLSTM. To examine how seg-
mentation performance is affected when putting ConvLSTM
at different positions in our architecture, we compare the
design of placing ConvLSTM after layer 11 (our choice), after
layer 13 and after softmax layer. As indicated by our results,
the mIoU of 2D FCN+ConvLSTM when putting ConvLSTM
after layer 13 and softmax layer decreases to 27.0% and
26.4% on A2D dataset, which is lower than mloU of placing
ConvLSTM after layer 11 by 2.9% and 3.5%, respectively.
This is expected as channel reduction in layer 13 and softmax

TABLE IV
THE MIOU PERFORMANCE OF 2D/3D FCN WITH DIFFERENT
INITIALIZATION OF NETWORKS ON A2D AND CAMVID TEST SET.

Method |  Initialization | A2D | CamVid
2D FCN from scratch 18.6 45.6
3D FCN from scratch 20.9 46.4
2D FCN | ImageNet pre-train 25.1 66.4
3D FCN | Sports-1M pre-train 28.0 62.2
[ .
L §
Qo Eos
Sa s
:
25t £ 665

O
Frame number in sequence Frame number in sequence

(a) 2D FCN+ConvLSTM on A2D. (b) 2D FCN+ConvLSTM on CamVid.

29, 63,
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285

mloU on A2D test set
mloU on CamVid test set
g

5 7 g
Frame number in video clip

(d) 3D FCN on CamVid.

s 7 5
Frame number in video clip

(c) 3D ECN on A2D.

Fig. 8. The mloU accuracy curves of 2D FCN+ConvLStm and 3D FCN with
different number of input frames on A2D and CamVid test set.

operation in softmax layer will lead to information loss and
thus affect the performance. More importantly, the mloU
performances of 2D FCN+ConvLSTM with different design
choices are always higher than that (25.1%) of 2D FCN,
demonstrating the advantage of exploring temporal dynamics
through ConvLSTM.

Different initialization of networks parameters. Table IV
compares the mloU accuracy of 2D FCN and 3D FCN between
training 2D/3D FCN from scratch and pre-training the network
on ImageNet or Sports-1M dataset. Overall, pre-training 2D
FCN and 3D FCN on large-scale dataset consistently lead to a
performance boost against training the networks from scratch
on both A2D and CamVid datasets. In particular, the mloU
performance of 2D FCN and 3D FCN with initialization on
pre-trained networks makes the absolute improvement over
that of networks training from scratch by 6.5% and 7.1% on
A2D dataset, respectively. The result indicates that improve-
ment can be generally expected when initializing the networks
for semantic segmentation with pre-trained parameters. This
originates from the fact that the training data for semantic
segmentation are often limited due to the extremely expensive
pixel-level annotations, making it difficult to train a powerful
network from scratch.

The number of temporal batch. The number of sequential
frames taking as the input to ConvLSTM and the number
of consecutive frames in a clip inputting into 3D FCN will
also impact the performance of segmentation. We conduct
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Fig. 9. Semantic video segmentation results on sampled frames in CamVid test set. In addition to the results predicted by the model trained on CamVid
training set (second row), we also show the results by applying our model trained on A2D dataset to the sampled frames in CamVid test set (third row).

TABLE V
THE MIOU PERFORMANCE OF 2D FCN+CONVLSTM WITH DIFFERENT
HIDDEN LAYER SIZE IN CONVLSTM ON A2D AND CAMVID TEST SET.

Hidden

. A2D CamVid | Parameter number
layer size
128 25.2 65.2 1.6M
256 26.5 66.0 4.1M
512 28.2 67.8 11.7M
1024 299 68.1 37.7TM
2048 30.2 68.0 132.1M

the experiments by varying the two numbers from 1 to 24
and from 3 to 11, respectively. The mIoU performance of 2D
FCN+ConvLSTM and 3D FCN with the increase of temporal
batch are reported on both A2D and CamVid dataset in Figure
8. ConvLSTM is benefited from the forget mechanism and
increasing the number of sequential frames to ConvLSTM
generally exhibits better performance on two datasets. In
contrast, the performance of 3D FCN is decreased when
the number of consecutive frames in a clip to 3D FCN is
over 9 and 5 on A2D and CamVid dataset, respectively.
Moreover, the performance of 3D FCN on CamVid dataset
drops sharply with the increase of the number of frames.
This somewhat indicates the difficulty of learning long-term

temporal dependency especially on very limited training data.

The hidden layer size of ConvLSTM. In order to show the
relationship between the performance and hidden layer size of
ConvLSTM, we compare the results of the hidden layer size in
the range of 128, 256, 512, 1024 and 2048. The results shown
in Table V indicate that increasing the hidden layer size can
generally lead to performance improvements. Meanwhile, the
number of parameters also increases dramatically. Therefore,
in our experiments, the hidden layer size is empirically set to
1024, which is same as input channels and has a better tradeoff
between performance and model complexity.

F. Extra Segmentation Results

In addition to the results predicted by the model trained
on CamVid training set as shown in Figure 7, we also show
the results by applying our model trained on A2D dataset
to the sampled frames in CamVid test set in Figure 9. We
can see that although there is a large gap between videos
in these two datasets, the model trained on A2D can still
successfully segment the pixels of the common categories, e.g.,
Car-running, Car-none, Adult-walking, Adult-none, and even
Dog-walking. In order to validate the generalization ability
of our model, we crawled one video from YouTube as an
additional real test and semantic segmentation results on this
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Fig. 10. Semantic video segmentation results on an additional football game video by using our model trained on A2D dataset.

video generated by our model trained on A2D dataset are
illustrated in Figure 10. We can observe that for the real
test video outside of the dataset, our model can also generate
promising segmentation results. The football, football players,
linesman and even the car advertisement on the billboard are
all segmented.

VI. CONCLUSION

We have presented a two-stream deep architecture for robust
semantic video segmentation, which is able to incorporate
spatio-temporal dependency from a sequence of frames and
the entire clip. Specifically, we model frame stream on the
pixel-level with 2D FCN followed by ConvLSTM, which is
employed to explore long-term information, while propose 3D
FCN for modeling clip stream on the voxel-level. Linearly fus-
ing the predictions of the two streams dramatically improves
the precision of segmentation. We show that our architecture
outperforms several state-of-the-art methods on two widely
used benchmarks.

There are several future directions. First, more advanced 2D
CNN (e.g., ResNet [21]) and 3D CNN (e.g., P3D [42]) could
be devised for modeling the spatial and temporal dimension of
the videos. Second, we will continue to conduct more in-depth
investigations on how the fusion weights of individual streams
can be dynamically determined to boost the performance of
semantic video segmentation.
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